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Let G be a graph on n vertices. We show that if the total number of isomorphism types of 

induced subgraphs of G is at most &II’, where E < lo-*‘, then either G or its complement 

contain an independent set on at least (1 - 4e)n vertices. This settles a problem of Erdiis and 

Hajnal. 

1. Introduction 

All graphs considered here are finite, simple and undirected. For a graph G, let 

i(G) denote the total number of isomorphism types of induced subgraphs of G. 

We call i(G) the &morphism number of G. Note that i(G) = i(c), where G is 

the complement of G, and that if G has 12 vertices then i(G) 2 II, as G contains an 

induced subgraph with m vertices for each m, 1 s m s n. An induced subgraph H 

of G is called trivial if it is either complete or independent. Let t(G) denote the 

maximum number of vertices of a trivial subgraph of G. Note that the complete 

bipartite graph G with vertex classes of size n/2 (>l) each has t(G) = n/2 and 

i(G) = @(n’). The above two estimates hold for a matching of n/2 edges, too. In 

March 1988, at the Cambridge Combinatorial Conference, And& Hajnal 

conjectured that if G is a graph on n vertices and i(G) = o(n2), then t(G) = 
n -o(n). As the main result of this paper, we shall prove this conjecture. 

Independently of us, the conjecture was proved in a stronger form by Erdiis and 

Hajnal [2]. 

Theorem 1.1. Let G be a graph on n vertices. Zf i(G) d En*, where E < lo-*‘, then 
t(G) 3 (1 - 4E)n. 

It is worth noting that both constants 10e2’ and 4 in the theorem above can be 

improved easily. We make no attempt to optimize the constants here and in the 

rest of the paper. 

The proof of Theorem 1.1 is somewhat lengthy, and is presented in the next 
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three sections. We first consider, in Section 4, graphs G which contain relatively 

large trivial subgraphs. Somewhat paradoxically, graphs with no large trivial 

subgraphs are more difficult to deal with; this case with be discussed in Section 3. 

In Section 1, Theorem 1.1 is obtained as an easy consequence of the results of 

Sections 2 and 3. In the final section we present some unsolved problems. 

2. Graphs with large trivial subgraphs 

In this section we prove the following theorem, which implies the assertion of 

Theorem 1.1 for graphs with relatively large trivial subgraphs. 

Theorem 2.1. Let G be a graph on n vertices and put t = t(G). Then 

i(G)amin 

This theorem is an easy consequence of the following lemma. 

Lemma 2.2. Let G = (V, E) be a graph on n vertices and put t = t(G). If t 2 n/2 

then 

i(G) 2 t(n - t)/3. 

Proof. By replacing, if necessary, G by its complement, we may assume that there 

is an independent set T of t vertices. Let H be the bipartite subgraph of G with 

vertex classes T and V\ T whose edges are the edges of G joining a vertex of 

T to a vertex of V\T. Let M = {a,bl, a2b2, . . . , a,b,} be a maximal matching 

in H, where a,, . . . , a,E T and b,, . . . , b,vE V\T. Furthermore, set A= 

{a,, . . . , a,), B = lb,, . . . , b,}, C=V\(TUB) and r=ICI=n-t-s. Note 

that by the maximality of A4 there are no edges from C to T\A. 
Given 1 and m satisfying 0 < 16 s, I d m s t and m 3 1, let T’ be a subset of 

T\{ai, a2,. . . , a,} of cardinality m - I and let G[,, be the subgraph of G 

spanned by the set of vertices {a,, b,, a2, b2, . , a,, b,} U T’. It is easily 

checked that G,,, has I+ m vertices and that its independence number is m. 
Therefore no two distinct members of the family {G,,, :0 c 1 s s, 1 s m s t, 
m 2 l} are isomorphic and hence 

i(G)st+t+(t-l)+(t-2)+** *+(r-s+l)=t(s+l)-J;). (1) 

Similarly, for each p, 0 up s r and each 4, 0 c q s t - s, let HP,4 be the induced 

subgraph of G on C’ U A U T’, where C’ c C is a subset of C of cardinality p, 
and T’ c T \A is a subset of T with IT’1 = q. Since in G there are no edges from 

C to T\A it is easy to check that HP.4 has p + q + s (al) vertices, and that its 
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independence number is q + s. Thus 

i(G) s (r + l)(t -s + 1) = (n - t -s + l)(t -s + 1). (2) 

We shall make no attempt to obtain the best bound implied by inequalities (1) 

and (2); we shall prove only the claim of the lemma. 

Multiplying inequality (1) by two and adding to it inequality (2), we see that 

3i(G) 3 2t(s + 1) - s(s - 1) + (n - t + 1 - s)(t + 1 -s) 

=(2t-n)s+2t-s+(n-t+l)(t+l)~(n-t+l)(t+l). cl 

Proof of Theorem 2.1. Let G = (V, E) be a graph on n vertices and put t - t(G). 
If t 2 n/2 then the assertion of the theorem follows from Lemma 2.2. Otherwise, 

let T c V be the set of vertices of a trivial subgraph of G, with ITI = t. Let U be 

an arbitrary subset of cardinality t of V \ T, and let H be the induced subgraph of 

G on T U U. Clearly t(H) = t = 1 IT U UI and hence, by Lemma 2.2 i(G) 3 

i(H) 2 t2/3. This completes the proof. 0 

3. Graphs without large trivial subgraphs 

This section is the heart of the paper; our main aim is to prove the following 

result. 

Theorem 3.1. Let G be a graph on n vertices. If t(G) < n/lO1” then i(G) 2 
n2/1010. 

The proof of this result is rather long and is based on two propositions. In turn, 

in the proofs of these propositions we make use of the following very useful 

lemma of ErdGs and LovSsz [3] (see also [l, pp. 20-221) sometimes called the 

Erd6s-LovBsz Local Lemma. 

Lemma 3.2. Let A,, . . . , A, be events in a probability space and let H be a graph 
of maximal degree d 2 2 on the set (1, 2, . . . , s}. Suppose that each Ai is 
independent of the system {Ai: i is not joined to j in H} and P(A,) < l/cd. Then 
the probability that no Ai occurs is positive. 

Proposition 3.3. Let G = (V, E) be a graph of order n and maximal degree A, 
with lo8 6 A c 0.9n. Then for every two integers j and 1 that satisfy 

0.51A <j < 0.524 < 1 c 0.5n 

there is an induced subgraph H of G with I V(H)/ = 1 vertices and maximal degree 
A(H) = j. In particular i(G) 2 nA/104. 
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Proof. Let f: V+ (0, l} be a random function, i.e. a random two-colouring of V 
obtained by choosing, for each u E V independently, a colour f(u) E (0, l} 

according to a uniform distribution on (0, l}. For each vertex u E V, let A, be the 

event that u has more than (A/2) + 2vm neighbours having the same 

colour. By the standard estimates for the probability in the tail of the binomial 

distribution (see e.g. [l. p. 13, Theorem 7]), it is easy to check that for every 

u E V we have 

P(A,) s A-8’3. 

Let H be the square of G, i.e. the graph obrained from G by adding all edges 

joining vertices at distance 2. Then A(H) =S A(A - 1) < A8’3/e, and so the graph 

H and the events A,, u E V, satisfy the conditions of Lemma 3.1. Therefore, with 

positive probability no A, occurs. 

Since (A/2) + 2vm < OSlA - 3, there is a two-colouring f: V+ (0, l} in 

which no vertex has more than 0.51A - 3 neighbours of either colour. We may 

assume without loss of generality that f gives colour 0 to at least half of the 

vertices: If-‘(O)1 2 n/2. Set U =f-‘(0) U {v}, where u is a vertex of maximal 

degree A in G. Note that no vertex of H has more than 0.51A - 2 neighbours 

in U. 

We next construct a sequence Ho, HI, . . . , H, of induced subgraphs of G with 

the following four properties: 

(a) A(HJ = A, 
(b) U c V(H,) for every i, 

(c) A(Hi) - 1 s A(Hi+,) s A(Hi) for every i, 

(d) A(H,) ~0.51A. 
To construct this sequence we start by taking Ho = G. Suppose that 

H,,H,,..., HP have already been defined and they satisfy (a), (b) and (c). If 

A(H,) c 0.51A we take p = r and complete the construction. Otherwise, HP has at 

least 2 vertices that do not belong to U. If one of them is a vertex of maximal 

degree in HP, we obtain HP+, by deleting the other. Otherwise, let HP+, be the 

graph obtained from HP by deleting one of these vertices. One can easily check 

that Ho, HI, . . . , HP+, satisfy (a), (b) and (c) and hence we can continue this 

process and complete the construction. 

By property (b) each Hi has at least n/2 vertices. By properties (a), (c) and (d) 

for each j, 0.51A ~j c A, one of these graphs has a maximal degree j. By deleting 

from such a graph all the non-neighbours of a vertex of maximal degree, one by 

one, we conclude that for every 1 satisfying j s 1 s n/2, there is an induced 

subgraph of G with I vertices and maximal degree j. In particular, there is a 

family of graph satisfying the conclusion of Proposition 3.3. 0 

The following technical result is a more complicated variant of the previous 

proposition. 
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Proposition 3.4. Let G = (V, E) be a graph on n vertices with maximal degree 

A<n/lOO. Suppose furthermore that the independence number of G is at most 
n/108. Then, for every two integers j and 1 satisfying 

0.51A<j<A, 0.05n~l~0.49n 

there is an induced subgraph H = (V(H), E(H)) of G, with no isolated vertices 
and with maximal degree A(H) such that 

j-lcA(H)cj and IsJV(H)JCI+~. 

In particular, G contains more than An/100 induced, pairwise non-isomorphic 
subgraphs, with no isolated vertices. 

Proof. The proof is similar to the previous one but contains several additional 

complications. 

Let v E V be a vertex of maximal degree d(v) = A in G, and denote by 

N(v) = T(v) U {v} the set of neighbours of v together with the vertex v. Let 

M = {a,bI, azb2, . . . , a,b,} be a maximum matching in the induced subgraph of 

G on V-N(v). Put ZJ =N(v) U {aI, bI, a2, b2,. . . , a,, b,} and let H be the 

induced subgraph of G on U. By the maximality of M, V\ U is an independent set 

in G and hence 

n 
IUlSn---. 

lo8 

Let f: U+ (0, l} be a random two-colouring of U obtained as follows: for each 

uEN(v)U{al,a2,a3,..., a,}, the colour f(u) E (0, 1) of u is chosen according 

to a uniform distribution on (0, l} with all choices being independent. For all 

1s i s s define f (bJ = f (a,). For each vertex u E U let A, be the event that u has 

more than (A/2) + 3dm neighbours in H having the same colour. As 

before, standard estimates for the binomial distribution (see [l, p. 13, Theorem 

71) imply that for every u E U we have 

P(A,) < A-6. 

Clearly, each event A, is independent of the system of events {A,,,: w E U, 
d(u, w) 2 5). Since for u E U at most 2A4 events A,,,, w E U, do not belong to this 

system, and P(A,) < AW6 < (2A4e)-‘, by Lemma 3.2 the probability that no event 

A, occurs is positive. 

Since (A/2) + 3dm < OSlA - 5, there is at least one two-colouring f of U 

in which no vertex has more than OSlA - 5 neighbours in H having the same 

colour. Without loss of generality we may assume that there is a set U; of at least 

lUl/2 vertices of U all coloured 0. Put U, = 17; U {v}. Note that no vertex of H 
has more than 0.15A - 4 neighbours in U,. 

Next, we construct a sequence H,, HI, . . . , H, of induced subgraphs of H with 
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the following five properties: 

(a) A(&) = A, 
(b) U, c V(H,) for every i, 

(c) for each Hi and each 1 sj c s the vertex aj belongs to Hi iff bj is a vertex 

Of Hi, 

(d) A(Hi) - 2 s A(Hi+,) c A(H;) for every i, 

(e) A(H,) =S 0.51A. 

To construct such a sequence we start by taking Ho= H. Suppose that 

&, H,, . . . , HP have already been defined and they satisfy (a), (b), (c) and (d). 

If A(H,) d 0.51A we take p = r and complete the construction. Otherwise the 

graph HP has at least four vertices that do not belong to U, . We construct HP + 1 by 

deleting one or two vertices of HP as follows. Let u. and u1 be two of these four 

vertices such that uoul is not an edge of M. If one of these vertices ui is a vertex 

of maximal degree in HP, we obtain HP+, by deleting the other vertex u,_~ and 

the vertex to which ul_-i is matched under M, if there is such a vertex. Otherwise, 

we obtain HP+, by deleting u. and the vertex to which it is matched under 

M, if there is such a vertex. It is easily checked that the sequence Ho, H,, 

Hz, . . . , H,,+, also satisfies (a), (b), (c) and (d). Since HP+, has fewer vertices 

than HP, the process will end within n steps. 

It is obvious that none of the graphs Ho, HI, . . . , H, has isolated vertices, and 

by (3) each of them has more than 0.49n vertices. Moreover, properties (a), (d) 

and (e) imply that for each j, OSlA<j c A, at least one of these graphs has 

maximal degree j or j - 1. Let Zi be a vertex of maximal degree (j or j - 1) in such 

a graph Hi. Since A G n/100, zi and its neighbours in Hi are incident with at most 

n/100 + 1 edges of M that saturate less than 0.0% vertices of Hi. By successively 

deleting all the non-neighbours of Zi in Hi, in such a way that together with every 

vertex matched under M we delete its mate as well, we conclude that for every 

0.05n < 1 s IV(H,)I there is an induced subgraph of Hi without isolated vertices of 

Hi, with either 1 or I + 1 vertices and with maximal degree A(Hi) E {j - 1, j}. This 

completes the proof of Proposition 3.4. 0 

Proof of Theorem 3.1. Let G = (V, E) be a graph on n vertices satisfying 

t(G) 6 n/lOl’. By replacing, if necessary, G by its complement, we may assume 

that 1El <t(;). Th’ is easily implies the existence of an induced subgraph 

H = (V, E) of G on m 3 n/10 vertices with maximal degree A < 0.9m. Indeed, 

otherwise there is a sequence vl, v2, . . . , ~~~~~~~ of vertices of G SO that 21i has 

degree greater than 0.9(n - i) in the induced subgraph of G on V(G) \ 

Ivl, * . . 9 vi-*>. But in this case IE(G)I 2 0.9n + 0.9(n - 1) + . . . + 0.9(n - 

10.9n]) > l($, a contradiction. 

Clearly t(H) < t(G) <m/108. Let A = A(H) denote the maximal degree in H. 
Since the independence number of H is smaller than m/10’, we have A > lo8 - 1. 

If A a m/1000 then, by Proposition 3.3, i(G) 2 i(H) 3 mA/104 2 m*/lO’> 
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n2/108, implying the assertion of Theorem 3.1. Thus we may assume that 

lo8 s A = A(H) s m/1000. (4) 

Let v be a vertex of maximal degree in H and let I”(u) = {vi, u2, . . . , uA} be 

the set of all its neighbours. Clearly Cuev(wj Ir,(u) rl r,(v)1 = CL, d,(vi) < A’, 
and hence the number of vertices u E V(H) for which IrH(u) n r,(v)1 > lOA*/m 

does not exceed m/10. Let us call a vertex u E V(H) good if u # u, u is not a 

neighbour of v and I&,(U) fl r,(v)1 c 10A2/m. Clearly, the number of good 

vertices in H is at least m - A - (m/10) > m/2. We now construct a set 

{ Ul, u2, . . . , u,}, with r = [m/lOOA], as follows. Let u1 be a good vertex of H 
and put HI = H\NH(uI) where, as earlier, NH(u) = {u} U rH(u). Clearly, H, has 

at least m - (A + 1) > m/2 vertices and thus it has at least one good vertex. Let u2 

be such a vertex and put H2 = H1\NHI(uZ). This process can be continued for at 

least r steps, since after I c r steps we are still left with at least m - l(A + 1) 2 

m - [m/lOOA] (A + 1) > m/2 vertices. Note that the degree of u in H, is at least 

A - (10A2/m) - [m/lOOA] > A/2, that {ui, . . . , u,} is an independent set of 

vertices in G and that no Ui has a neighbour in H,. The graph H, has m’ 2 m /2 
vertices and maximal degree A’ satisfying A/2 s A’ s A. Moreover, t(H,) c 
t(G) <n/10’“<m/108. By inequality (4), we have A’ cm’/lOO. Therefore, by 

Proposition 3.4, the graph H, contains at least A’m’/lOO 2 Am/200 induced, 

pairwise non-isomorphic subgraphs, with no isolated vertices. All the induced 

subgraphs of G obtained by taking one of these subgraphs together with a set 

{ u1, &, . . . 9 u,}, 0 < s < r, are pairwise non-isomorphic, since ul, . . . , u, are the 

only isolated vertices in each of these subgraphs. We thus conclude that 

i(G) 3 r . (mA/200) 2 (m/lOOA) . (mA/200) 2 m2/105 2 n2/107. 

This completes the proof of Theorem 3.1. Cl 

4. The proof of the main result 

In this short section, we finally deduce Theorem 1.1 from the results of the 

previous two sections. Let G be a graph on n vertices, and suppose that 

i(G) 6 En’, where E < 10e2’. By Theorem 3.1 we have t(G) 2 n/lO1’. Put 

t(G) = c. By Theorem 2.1 we have I an/2 since otherwise i(G) 2 t2/3 3 

n2/3. 102’ > r~‘/lO~~ contradicting the hypothesis. Therefore, by Theorem 2.1, 

t(n - t)/3 < 8x2. Since t > n/2 and E < 10p2’, this easily gives t 2 (1 - 4.c)n, 

completing the proof of Theorem 1.1. 0 

5. Unsolved problems 

In proving our theorem, we did not count the total number of isomorphism 

types of induced subgraphs, as the definition of i(G) requires, but only the total 
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number of types that can be distinguished by the following five parameters: the 
order, the maximal degree, the independence number, the clique number and the 
number of isolated vertices. In fact, in any particular case, we used only two of 
these parameters to show that we had sufficiently many non-isomorphic sub- 
graphs. This raises the following rather general question: given a set 17 of graph 
parameters and a graph G of order n with t = t(G), at least how many 
isomorphism classes of induced subgraphs are there in G that can be distinguished 
by the parameters in fl? Writing f(n, t; II) for the minimum, our main result 
shows that if E > 0 is small enough then for t c (1 - .s)n we have f(n, t; II&,) a 

&/4, where J7,, is the set of five parameters above. It would be interesting to 
determine, whether a similar inequality is true for the set 17, consisting of order 
and size. 

In fact, the following more general problem presents itself. Given a set Xn of 
graphs of order n, and a set 17of graph parameters, what is the minimum of the 
number of induced subgraphs in a graph H E Xn distinguished by II? In this paper 
we studied the set of graphs without large trivial subgraphs. 

One could also hope for considerably sharper results concerning the connection 
between i(G) and t(G). Is it true for every E > 0 and natural number k, there is a 
constant c = C(E, k) > 0 such that if G,, is a graph of order IZ satisfying 
t(G,J s (l/k - c)lt then i(G) 2 cn k+*7 At the moment we cannot even show that . 

if t(G,) = o(n) then i(G,) grows faster than any polynomial of IZ. 
Finally, let us state one of the problems of Erdiis and RCnyi: given c > 0, is 

there a constant d = d(c) > 0 such that if t(Gn) c c log 12 then i(G) 2 2d”? 
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